Galvanised HEELPROOF™ Grate & Frame

Technical Guide D16.8

The HEELPROOF™ grate is an ideal product for use on common sized concrete sumps, where pedestrian safety is required.

Applications

Service Stations

High Volume Pedestrian Areas

Sump and trench versions available

Features

Screened grate style reduces aperture

Anti-slip cleats for improved slip resistance

Galvanised steel construction for long life

Class A, Class B, and Class D rating

Flat edged frame for ease of use with pavers or concrete/asphalt

Approvals / Standards

Load Tested to AS3996:2019 in Class A, Class B, and Class D

P5 rated for slip resistance to AS4586-2013

The EJ HeelProof grates are made from durable galvanised steel for a long service life.

They are ideal for high volume pedestrian walkways. With Class A, Class B, and Class D load ratings, there is a grate suitable for all shared space applications.

Product Attributes

- Galvanised finish for long life.
- Anti-slip cleat surface for improved slip resistance.
- Narrow openings make the grates safe for all footwear.
- Galvanised lugged frame for easy embedding in concrete.

TABLE 1 HeelProof available sizes		
	Code	Dimensions
SUM	P FRAME AND GRATES	
CLAS	SS A (Pedestrian loading 10	0 kN or 1 tonne)
	GGHS450450AGF	450 x 450
	GGHS610610AGF	610 × 610
	GGHS675450AGF	675 × 450
	GGHS910610AGF	910 × 610
	GGHS910910AGF	910 x 910
CLAS	SS D (Heavy Traffic loading	240 kN or 24 tonne)
	GGHS300300DGF	300 x 300
	GGHS450450DGF	450 x 450
	GGHS610610DGF	610 × 610
	GGHS675450DGF	675 × 450
盘	GGHS910610DGF	910 × 610
	GGHS910910DGF	910 × 910
	ICH FRAME AND GRATES	
		ffic loading 80kN or 80 tonne)
盘	GGHS150ATGF	150 x 1 m
盘	GGHS250ATGF	250 x 1 m
盘	GGHS300ATGF	300 x 1 m
CLAS	SS D (Heavy Traffic loading	240 kN or 24 tonne)
盘	GGHS150DTGF	150 x 1 m
盘	GGHS250DTGF	250 x 1 m
盘	GGHS300DTGF	300 x 1 m



FIG. 1

FIG.

Flow Rate Calculations

Assumptions

- 1. Standard orifice flow conditions exist
- 2. Grates are installed flush to the ground in a level area
- 3. The inlet is not fully drowned (orifice discharges to atmosphere)
- 4. Effects of Turbulence and Friction are not calculated
- 5. Ponding water is assumed to act as a reservoir with negligible flow velocity

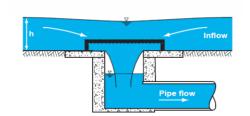
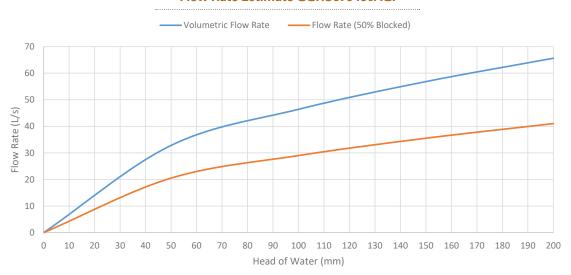
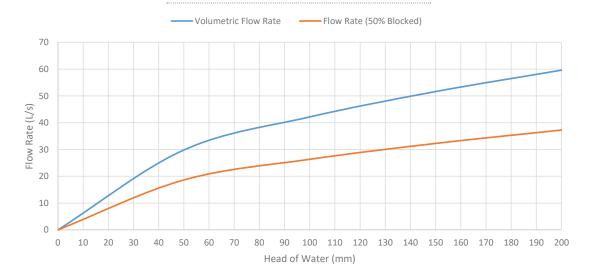




FIG. 3 Orifice flow conditions (Queensland Transport, 2013). Note: Illustration only. Correct installation requires that grates are mounted flush with ground.

Flow Rate Estimate GGHS675450AGF

Flow Rate Estimate GGHS675450DGF

Branches Nationwide Support Office & Technical Services 0800 93 7473

Disclaimer: While every effort has been made to ensure that the information in this document is correct and accurate, users of Hynds product or information within this document must make their own assessment of suitability for their particular application. Product dimensions are nominal only, and should be verified if critical to a particular installation. No warranty is either expressed, implied, or statutory made by Hynds unless expressly stated in any sale and purchase agreement entered into between Hynds and the user.

